Differences and similarities in the neurotrophic growth factor requirements of sensory neurons derived from neural crest and neural placode.

نویسندگان

  • R M Lindsay
  • Y A Barde
  • A M Davies
  • H Rohrer
چکیده

This article reviews recent studies that have examined differences and similarities in the neurotrophic growth factor requirements of neural crest- and neural placode-derived sensory neurons of the developing chick embryo. From in vitro experiments using both explant and dissociated, neuron-enriched cultures of spinal and cranial nerve sensory neurons, it has been established that only sensory neurons of neural crest origin are responsive, at least in terms of survival and neurite outgrowth, to mouse submandibular gland nerve growth factor (NGF). Sensory neurons derived from neural placodes (neurons of the ventrolateral portion of the trigeminal ganglion and the entire neuronal population of the vestibular, geniculate, petrosal and nodose ganglia) are largely unresponsive to NGF throughout embryonic development, but do respond to neurotrophic activity present in extracts of brain and various peripheral 'end-organs', such as heart or liver. By incubation of neuron-enriched cultures with radiolabelled [125I]NGF, followed by autoradiographic exposure, it has been demonstrated that placode-derived neurons, in marked contrast to those of neural crest origin, are completely devoid of specific cell surface receptors for NGF. In contrast to differences in their requirement and responsiveness to NGF, both placode- and crest-derived sensory neurons are responsive to the survival and neurite-promoting activity of a recently purified brain-derived neurotrophic factor (BDNF). It is postulated that all primary sensory neurons have a dual growth factor requirement during development; their survival being dependent on a supply of both a peripheral and a central 'target'-derived neurotrophic factor. It appears that BDNF may act as common 'central target-derived' neurotrophic factor for both placode- and crest-derived sensory neurons, but that within peripheral tissues there are specific neurotrophic factors for each of these two classes of primary sensory neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of neurofibromin results in neurotrophin-independent survival of embryonic sensory and sympathetic neurons

Mutations at the neurofibromatosis 1 (NF1) locus in humans and mice result in abnormal growth of neural crest-derived cells, including melanocytes and Schwann cells. We have exploited a targeted disruption of the NF1 gene in mice to examine the role of neurofibromin in the acquisition of neurotrophin dependence in embryonic neurons. We show that both neural crest- and placode-derived sensory ne...

متن کامل

Human Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro

Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...

متن کامل

Stem cell factor is a neurotrophic factor for neural crest-derived chick sensory neurons.

We have found that stem cell factor (SCF) selectively enhances the survival of cultured embryonic chick dorsal root ganglia (DRG) neurons. Neurons grown in the presence of SCF expressed both neurofilament 150 kDa subunit and calcitonin-gene related peptide. SCF does not, however, enhance the survival of parasympathetic, placode-derived sensory or sympathetic neurons in culture. Combining SCF wi...

متن کامل

Loss of brain-derived neurotrophic factor-dependent neural crest-derived sensory neurons in neurotrophin-4 mutant mice.

Peripheral ganglion neurons confer sensory information including touch, pain, temperature, and proprioception. Sensory modality is linked to specific neurotrophin (NTF) requirements. NT-3 supports survival of neurons that differentiate primarily into proprioceptors whereas nerve growth factor and brain-derived neurotrophic factor (BDNF) support subpopulations that transmit nociception and mecha...

متن کامل

Neuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells.

Neuropilin (NRP) receptors and their class 3 semaphorin (SEMA3) ligands play well-established roles in axon guidance, with loss of NRP1, NRP2, SEMA3A or SEMA3F causing defasciculation and errors in growth cone guidance of peripherally projecting nerves. Here we report that loss of NRP1 or NRP2 also impairs sensory neuron positioning in the mouse head, and that this defect is a consequence of in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science. Supplement

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1985